跳到主要內容

煙草粉蝨(Bemisia tabaci )偷植物的基因來防禦自己

 

圖片來源:維基百科

以吸食植物篩管的汁液維生的煙草粉蝨(silverleaf whitefly,Bemisia tabaci),也稱為銀葉粉蝨,是很常見也很重要的害蟲。因為牠可以吸食超過六百種植物的汁液,對於許多農藥都有抗性,已成為令農夫非常頭痛的害蟲之一。

之前的研究已經發現,煙草粉蝨可以把十字花科(如白菜、高麗菜等)的植物合成的「芥末油炸彈」中的異硫氰酸酯(isothiocyanate)的前毒素(稱為protoxin)給加上更多的葡萄糖。讓前毒素無法被植物本身的水解酶辨識,於是就不會產生異硫氰酸酯,也就無法殺死煙草粉蝨了;最近的研究更發現,原來煙草粉蝨還從植物偷了一個酵素來中和植物產生的抗蟲次級代謝物「酚類糖苷」(phenolic glycosides)。

這個酵素是一個酚類葡萄糖苷丙二酸轉移酶(phenolic glucoside malonyltransferase)。煙草粉蝨的酚類葡萄糖苷丙二酸轉移酶基因,稱為BtPMaT1,它會產生一個461個胺基酸的蛋白質。序列分析發現,這個基因在其他節肢動物中都找不到,但是植物裡面有它;也就是說,這個基因應該極有可能是從植物平行轉移到煙草粉蝨上的。

過去唯一的跨生物界基因平行轉移是農桿菌(Agrobacterium tumefaciens)。煙草粉蝨的例子,是第二例跨界生物平行轉移;而這個轉移無疑地,對煙草粉蝨是有極大好處的。

當研究團隊以干擾RNA技術,將BtPMaT1的干擾RNA植入番茄後,吸食過番茄汁液的煙草粉蝨,對植物所產生的酚類糖苷就無法抵禦了,這使得這種轉殖番茄對煙草粉蝨有抵抗力。

基因序列分析顯示,煙草粉蝨應該是從三千五百萬年前就得到了這個基因。可是到底煙草粉蝨是怎麼偷到這個基因的?雖然研究團隊懷疑可能是由病毒帶入,但這個問題可能永遠也不會有答案,不過煙草粉蝨無疑地是很成功的害蟲!

參考文獻:

Jixing Xia, Zhaojiang Guo, Zezhong Yang, Haolin Han, Shaoli Wang, Haifeng Xu, Xin Yang, Fengshan Yang, Qingjun Wu, Wen Xie, Xuguo Zhou, Wannes Dermauw, Ted C.J. Turlings, Youjun Zhang, Whitefly hijacks a plant detoxification gene that neutralizes plant toxins, Cell, 2021, , ISSN 0092-8674, https://doi.org/10.1016/j.cell.2021.02.014.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N