跳到主要內容

磷(P)對植物生長發育的影響

 磷(phosphorus,元素符號P)是植物的必需元素之一,植物以磷酸鹽(主要為H2PO4-與HPO42-)的形式吸收它。植物中的能量代謝必須的ATP(三磷酸腺苷)與NADPH(菸鹼醯胺腺嘌呤二核苷酸磷酸)、構成遺傳物質的核酸(DNA與RNA)、細胞膜的磷脂質(phospholipid)都帶有磷。

另外,磷酸根對於蛋白質活性的調節、蛋白質穩定性的調節以及蛋白質在細胞內位置的調節也都非常重要。一個蛋白質的磷酸化與否,會影響到它是否會有活性、會不會被分解、或它會不會被送進/帶出細胞核。一個細胞在任何時間內,都有大約三分之一的蛋白質是處在磷酸化的狀態。

缺磷的植物會因為葉綠體內磷酸根濃度下降,造成ATP的生產下降;因為ATP減少造成卡爾文循環(Calvin cycle,碳反應)活性下降,使得NADPH不會被消耗,於是葉綠體內的NADPH濃度上升。而因為卡爾文循環活性下降,使得植物的產能下降。

缺磷不只會影響到卡爾文循環,還會使得細胞呼吸作用中的電子傳遞鏈(electron transport chain,又稱為cytochrome C oxidase [COX] 途徑)受阻。當COX途徑受阻的時候,植物細胞為了要維持電子傳遞鏈繼續運作,就會啟動另一條電子傳遞鏈,稱為AOX途徑(alternative oxidase pathway):

AOX途徑。圖片來源:維基百科

AOX途徑可在不產生ATP的狀態下,將電子傳遞給氧氣產生水,這樣就可以把電子消耗掉,以免過多的電子在植物體內形成自由基(ROS)。除了COX途徑受阻可啟動AOX途徑,植物在缺磷時也會累積檸檬酸,造成AOX途徑啟動。

檸檬酸的累積有兩個來源:第一個來源是根部在缺磷時會累積一氧化氮(NO)。一氧化氮會抑制檸檬酸循環的第二個酵素烏頭酸酶(aconitase),使檸檬酸(citrate)無法轉為異檸檬酸(isocitrate),造成檸檬酸累積;第二個來源是粒線體中的檸檬酸循環(citric acid cycle)與乙醛體(glyoxysome)中的乙醛酸循環(glyoxylate cycle)的檸檬酸合成酶(citrate synthase)與磷酸烯醇丙酮酸(PEP)羧化酶(phosphoenolpyruvate [PEP] carboxylase)的活性上升。累積的檸檬酸會從根部分泌出去,用來溶解沉澱的磷酸鋁、磷酸鐵與磷酸鈣,讓植物可以吸收到更多的磷酸根。

植物在缺磷時會產生更多的側根與根毛,但莖的分枝會減少。側根與根毛的產生與生長素(auxin)有關。目前發現缺磷時生長素受器TIR1表現量上升,使得根部維管束最外層的薄壁細胞(pericycle)對生長素的敏感度上升,造成側根的生長。

莖分枝的減少則是因為植物在缺磷的時候根部會合成較多的獨腳金內酯(strigolactone),並運輸到莖葉,造成向胞外運輸生長素的蛋白質PIN1開始分解。PIN1的分解使得生長素無法由芽被送到莖,而芽的生長素累積造成芽無法生長,於是莖的分枝就減少了。

許多(但不是全部)的植物在缺磷時會累積花青素(anthocyanin)。花青素的累積加上細胞分裂與擴展的減少,使得許多缺磷的植物的葉片呈現一種紅紫色的色調。不過,就像我們強調的,並不是所有的植物都會累積花青素:馬鈴薯、甜菜與稻米在缺磷時就不會出現這個症狀。即使會出現花青素累積的植物,症狀也因種而異。

總而言之,植物在缺磷的時候會產生更多的側根與根毛,但莖的分枝會減少。根除了產生更多的側根與根毛,還會分泌如檸檬酸這類的有機酸來溶解土壤中沉澱的磷酸鹽,以增加磷酸鹽的吸收。有些植物會有花青素的累積,使得植物在缺磷時出現紅紫色的葉片。

參考文獻: 

Thomas Christian de Bang et. al., 2020. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist. https://doi.org/10.1111/nph.17074

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N