跳到主要內容

霞櫻的黑熊便車

全球暖化已經成了地球上所有生物的大考驗。動物可以遷徙,往高緯度(latitudinally)或高海拔(altitudinally)移動;但是不能移動的植物要怎麼辦呢?

雖然植物不能移動,但是種子可以經由水力、風力與動物的散播,前往遠處。不過,可以藉風散播的植物種子,或許可以乘風往高緯度或高海拔移動(只要風向對的話)。水力就要看河流、洋流的方向了。運氣好,可以往高緯度移動;運氣不好,就只能往低緯度與低海拔地區移動了。至於藉由動物移動的種子們,又怎麼能控制動物移動的方向呢?

來自日本的研究團隊,以當地的本土植物霞櫻(Prunus verecunda)作為研究標的,在2010-2013年於日本中部,研究亞洲黑熊(Asiatic black bear,Ursus thibetanus)與日本貂(Japanese martens,Martes melampus)的糞便裡面的霞櫻種子發現,這兩種動物會在春夏兩季將霞櫻的種子帶往山頂。由亞洲黑熊帶上去的佔八成,其餘則由日本貂來達成。

亞洲黑熊。圖片來源:Wiki

研究團隊是怎麼知道這些霞櫻種子屬於較低海拔區域的呢?原來,氧原子有兩種同位素,一種是18O,另一種是16O。過去的研究發現,越往高海拔移動,這兩種同位素的比值( δ18O,18O/16O)就越小。所以,如果牠們糞便中的霞櫻種子的氧同位素比值,與同海拔地區的其他植物組織內的比值不同,就代表這些種子是來自於不同海拔高度;而如果呈現負相關(也就是往高海拔δ18O反而提高),就代表了這些種子是由低海拔區域帶上去的。而由比值的變化程度,更可以計算出這些種子大約是來自於哪一個海拔高度呢!

分析霞櫻種子裡面的氧同位素比例發現,亞洲黑熊平均約可以把種子往高海拔區域移動750公尺,而日本貂因為體型較小,只能往上移動460公尺。不過,即使只有升高海拔460公尺,溫度也已經降低了攝氏1.3度;至於750公尺則可以降低攝氏2度,以目前全球的升溫狀況來看,對霞櫻來說也已經足夠維持它們的生存。

日本貂。圖片來源:wiki

當然,不論是亞洲黑熊還是日本貂,都並不會刻意把種子帶上去。牠們都是雜食性動物,在春夏二季,受到了霞櫻香甜的果實吸引,在連果肉帶種子地吞食下去後,接著便意猶未盡地往高海拔地區移動,繼續尋找其他的果實或嫩葉。種子在經過牠們的腸道後,大約45個小時後(以亞洲黑熊為例)便隨著糞便排出,若那時牠們剛好在更高海拔區採食,種子便到了高海拔的地區。

當然,牠們在秋冬的時候也會有往低海拔地區移動的情形。這個狀況特別是在氣候不佳、食物不豐富的年頭,因為需要過冬要儲存養分,往低海拔區尋找食物的狀況更加明顯。但由於霞櫻開花結果的時間是在春夏,在那個時間牠們每天覓食的路徑大多是由低海拔區域往高海拔區域移動,於是就造成了研究團隊看到的往高海拔地區移動的狀況了。

所以,即使是無法藉風力、水力散播的植物種子,一樣可以搭其他生物的順風車往想去的地方移動--只要這順風車走對方向的話。因此,研究團隊也指出,在植物的散播上,藉助動物的力量這一環也是不容忽視的。而以氧同位素比例(δ18O)作為分析工具,更可以作為研究垂直散播的重要工具。相比於耗時費資源的分析基因體來找尋親本,氧同位素比例分析不啻為一個較為低成本且快速的方式。

許多植物苦心孤詣發展出誘人的果實,就是為了要吸引動物來採食之後,順便把種子帶往遠處去散播。在索爾‧漢森的「種子的勝利」一書中提到,全世界的植物中,大約有三分之一的種子是依靠動物來散播的。當然,往高海拔地區移動,雖然短時間內解決了暖化所帶來的問題,但是如果山不夠高的話,等到了山頂之後,若全球升溫的程度仍未稍減(估計到2100年時,全球升溫最高可達攝氏4.8度),這時就算有黑熊與日本貂,只怕也幫不上什麼忙了?

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Shoji Naoe et. al., 2016. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Curr. Biol. DOI: http://dx.doi.org/10.1016/j.cub.2016.03.002

R. L. Burk and M. Stuiver. 1981. Oxygen Isotope Ratios in Trees Reflect Mean Annual Temperature and Humidity. Science. 211(4489): 1417-1419. DOI: 10.1126/science.211.4489.1417

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...