跳到主要內容

玉米(maize)的前世今生

美國是玉米的國度。翻開「雜食者的兩難」第九十四頁,你會看到「實際上,我們每人每年消耗一公噸的玉米」這句話。這一公噸當然不是「啃」下肚的:它以動物飼料、高果糖糖漿、玉米餅、玉米粉等型態,或直接或間接地進入你的體內。

不同品種的玉米。圖片來源:wiki

如果回頭看四千年前北美並不產玉米,現在玉米如此的普及也真是令人驚訝。但是北美洲真的不是玉米的原鄉!玉米(Zea mays)原產於中美洲,它的祖先是大芻草(teosinte)。但是,大芻草長得跟玉米還有相當的落差;雖然在遠古的氣候與二氧化碳濃度下培育的大芻草,與現代的玉米有相像之處(詳見「大芻草真的是玉米的祖先嗎?」),但還是存在著差異的。

這個差異,是數千年來育種的結果。大芻草原產於墨西哥中部,大約在六千到一萬年前馴化。四千年前它首次出現在美國的東南部,但究竟它是沿著太平洋海岸而來,或是由墨西哥中部的高地傳播到美國呢?

為了解開這個謎團,來自哥本哈根大學(University of Copenhagen)的研究團隊,將來自七個不同考古位址的32個玉米芯進行定序。這些玉米芯橫跨了五千年的光陰,品種也不相同。

玉米的前世(左)與今生(右)。圖片來源:Science

定序的結果發現,四千年前首先傳入美國的玉米,是來自於高地的品系;兩千年以後,玉米的基因中,開始混入由太平洋海岸傳入的品系。由於海岸與高地玉米是兩種不同的品系,而海岸品系的玉米對美國東南部的乾燥氣候可能也有適應不良的問題,農夫們開始進行雜交與育種,試圖培育出更能適應乾燥氣候的玉米。

不過,首先育種成功的品系倒不具有耐旱的特性,而是不落果(shattering,zagl1)品系。對植物來說,瓜熟蒂落才能成功地散佈種子,但是這卻會使農夫收穫困難。接著耐旱品系才出現(筆者按:由於玉米是C4植物,原本就比較耐旱,而掉在地上的果實就不會被收集,或許這也是不落果首先被篩選出來的原因吧?)。最後,大約一千年前,才有好吃又營養的玉米品系被培育出來。

從這些資料裡,可以看到即使是玉米這樣較為近代才馴化、育種的作物,都有這樣複雜的歷史;如小麥、稻米等作物,他們的演進就更加複雜了。種植作物的人,或有心、或無意,使作物有了今天的風貌,在我們吃著好吃又營養的「大」玉米時,遙想那比玉米筍還小的大芻草的果實,能不神往乎?

參考文獻:

Lizzie Wade. 2015/1/8. How corn became corn. Science Now.

M. Thomas P. Gilbert et. al. 2015. The origin and evolution of maize in theSouthwestern United States. Nature Plants. doi:10.1038/nplants.2014.3

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...