跳到主要內容

二氧化碳多,植物就會長得快嗎?

櫸木有外生菌根。圖片來源:Wiki
對於溫室效應(Greenhouse Effect)大家都耳熟能詳了,也知道是因為大氣中因為人類活動所產生的溫室氣體越來越多,這些氣體把太陽與地球所產生的輻射能量留在大氣層裡面,使地球表面的溫度提高。

溫室氣體(greenhouse gases)包括了水蒸氣(H2O)、二氧化碳(CO2)、甲烷(CH4)、一氧化二氮(N2O)、臭氧(O3)與氯氟碳化物(CFCs,Chlorofluorocarbons),不過最主要的還是二氧化碳。慢著!二氧化碳不也是植物光合作用的原料之一嗎?那麼說起來,當大氣中的二氧化碳濃度提高,就代表植物會有更多的原料可以進行光合作用,所以...溫室效應所帶來的二氧化碳濃度上昇,應該會造成植物長得更好,所以溫室效應也不全是壞的囉?

理論上雖然是這樣,不過在實驗中卻發現不見得是這樣喔!有些植物的確長得更好,但效果並不持續;有些卻完全沒有長得更好。雖然有人認為可能是因為氮素不足,但在有些實驗裡又發現好像氮沒有那麼重要;至於植物的年齡與種類、水分、溫度、甚至添加二氧化碳的技術,雖然都可能有影響,卻又無法解釋不同實驗的結果。

到底是什麼影響到植物對二氧化碳所產生的反應呢?由歐洲與美國所組成的研究團隊,想到了菌根(mycorrhiza)。菌根是與植物根部共生的真菌,約有94%的植物根部都可以找到它(剩下的6%是水生植物)。有些菌根會把菌絲伸入植物的根細胞中形成菌根共生體(arbuscular mycorrhizae,簡稱AM),有些菌根則只會包覆在植物根的外圍,形成外生菌根(ectomycorrhizae,ECM)。這些真菌協助植物吸收水分與礦物質,從植物那裡得到光合作用所產生的醣類,對植物的生長與養分的循環有很大的貢獻。

但是外生菌根與菌根共生體與植物之間的互動其實不盡相同。過去的研究發現,外生菌根非常的講義氣,不管土壤裡面的養分(尤其是氮素)充足與否,外生菌根會一直與植物維持共生關係;相對的,菌根共生體雖然名為共生體,但是當土壤養分不足時,有些菌根共生體會轉為寄生(OS:那...還叫共生體嗎?)。而它們的分佈也不相同:菌根共生體多半都與沙漠、草原、灌木以及熱帶森林的植物在一起,外生菌根則常見於溫帶與寒帶森林。所以,會不會之前的許多實驗,其實都受到菌根種類的影響呢?

為了了解是否菌根真的是影響植物對二氧化碳反應的主因之一,研究團隊分析了83個不同研究團隊的實驗。結果發現,影響植物對二氧化碳的反應的主因,除了二氧化碳增加的幅度以外,就剩下氮素的高低與菌根的種類了。而且菌根種類對植物對二氧化碳反應的影響力,只低於氮素的高低呢!

研究團隊發現,當二氧化碳的濃度上昇到400-650 ppm時,以外生菌根為主的植物,生長的速度(以植物重量的增加來表示)提高了將近三分之一(30±3%);但菌根共生體在相同的狀況下生長的速度只提高了不到一成(7±4%)。

而這個效應,在氮素不足的土壤中更明顯。外生菌根在氮素不足的土壤中,還是可以幫助植物提高生長速度(28±5%),但是菌根共生體在氮素不足的環境下,對植物的生長就沒有幫助了(轉為寄生了嗎?)。相對的,當土壤中氮素充足時,有菌根共生體的植物,生長的速度提高了大約兩成(20±6%),但與外生菌根共生的植物,生長的速度只略微提高(33±4%)而已。

這個實驗結果告訴了我們,由於外生菌根多半與寒帶、溫帶林木共生,當大氣中二氧化碳的濃度節節上昇時,溫帶與寒帶林就變得越來越重要了;尤其是野外的森林,通常不會(也不可能)會有人刻意給予氮肥,因此可以假設在溫帶與寒帶的野生林木,對於固碳的重要性是高於熱帶森林的。

當然,這個實驗也意味著,過去在估計植物對固碳的貢獻時,溫帶與寒帶的森林的貢獻有被嚴重低估的現象喔!雖然聽起來似乎是個好消息,不過這些年的研究也發現,全球暖化會影響到土壤的菌相,所以還是不要太高興比較好呢!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

César Terrer et. al. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 01 Jul 2016: Vol. 353, Issue 6294, pp. 72-74 DOI: 10.1126/science.aaf4610

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N