跳到主要內容

二氧化碳多,植物就會長得快嗎?

櫸木有外生菌根。圖片來源:Wiki
對於溫室效應(Greenhouse Effect)大家都耳熟能詳了,也知道是因為大氣中因為人類活動所產生的溫室氣體越來越多,這些氣體把太陽與地球所產生的輻射能量留在大氣層裡面,使地球表面的溫度提高。

溫室氣體(greenhouse gases)包括了水蒸氣(H2O)、二氧化碳(CO2)、甲烷(CH4)、一氧化二氮(N2O)、臭氧(O3)與氯氟碳化物(CFCs,Chlorofluorocarbons),不過最主要的還是二氧化碳。慢著!二氧化碳不也是植物光合作用的原料之一嗎?那麼說起來,當大氣中的二氧化碳濃度提高,就代表植物會有更多的原料可以進行光合作用,所以...溫室效應所帶來的二氧化碳濃度上昇,應該會造成植物長得更好,所以溫室效應也不全是壞的囉?

理論上雖然是這樣,不過在實驗中卻發現不見得是這樣喔!有些植物的確長得更好,但效果並不持續;有些卻完全沒有長得更好。雖然有人認為可能是因為氮素不足,但在有些實驗裡又發現好像氮沒有那麼重要;至於植物的年齡與種類、水分、溫度、甚至添加二氧化碳的技術,雖然都可能有影響,卻又無法解釋不同實驗的結果。

到底是什麼影響到植物對二氧化碳所產生的反應呢?由歐洲與美國所組成的研究團隊,想到了菌根(mycorrhiza)。菌根是與植物根部共生的真菌,約有94%的植物根部都可以找到它(剩下的6%是水生植物)。有些菌根會把菌絲伸入植物的根細胞中形成菌根共生體(arbuscular mycorrhizae,簡稱AM),有些菌根則只會包覆在植物根的外圍,形成外生菌根(ectomycorrhizae,ECM)。這些真菌協助植物吸收水分與礦物質,從植物那裡得到光合作用所產生的醣類,對植物的生長與養分的循環有很大的貢獻。

但是外生菌根與菌根共生體與植物之間的互動其實不盡相同。過去的研究發現,外生菌根非常的講義氣,不管土壤裡面的養分(尤其是氮素)充足與否,外生菌根會一直與植物維持共生關係;相對的,菌根共生體雖然名為共生體,但是當土壤養分不足時,有些菌根共生體會轉為寄生(OS:那...還叫共生體嗎?)。而它們的分佈也不相同:菌根共生體多半都與沙漠、草原、灌木以及熱帶森林的植物在一起,外生菌根則常見於溫帶與寒帶森林。所以,會不會之前的許多實驗,其實都受到菌根種類的影響呢?

為了了解是否菌根真的是影響植物對二氧化碳反應的主因之一,研究團隊分析了83個不同研究團隊的實驗。結果發現,影響植物對二氧化碳的反應的主因,除了二氧化碳增加的幅度以外,就剩下氮素的高低與菌根的種類了。而且菌根種類對植物對二氧化碳反應的影響力,只低於氮素的高低呢!

研究團隊發現,當二氧化碳的濃度上昇到400-650 ppm時,以外生菌根為主的植物,生長的速度(以植物重量的增加來表示)提高了將近三分之一(30±3%);但菌根共生體在相同的狀況下生長的速度只提高了不到一成(7±4%)。

而這個效應,在氮素不足的土壤中更明顯。外生菌根在氮素不足的土壤中,還是可以幫助植物提高生長速度(28±5%),但是菌根共生體在氮素不足的環境下,對植物的生長就沒有幫助了(轉為寄生了嗎?)。相對的,當土壤中氮素充足時,有菌根共生體的植物,生長的速度提高了大約兩成(20±6%),但與外生菌根共生的植物,生長的速度只略微提高(33±4%)而已。

這個實驗結果告訴了我們,由於外生菌根多半與寒帶、溫帶林木共生,當大氣中二氧化碳的濃度節節上昇時,溫帶與寒帶林就變得越來越重要了;尤其是野外的森林,通常不會(也不可能)會有人刻意給予氮肥,因此可以假設在溫帶與寒帶的野生林木,對於固碳的重要性是高於熱帶森林的。

當然,這個實驗也意味著,過去在估計植物對固碳的貢獻時,溫帶與寒帶的森林的貢獻有被嚴重低估的現象喔!雖然聽起來似乎是個好消息,不過這些年的研究也發現,全球暖化會影響到土壤的菌相,所以還是不要太高興比較好呢!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

César Terrer et. al. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 01 Jul 2016: Vol. 353, Issue 6294, pp. 72-74 DOI: 10.1126/science.aaf4610

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...