跳到主要內容

光敏素(phytochrome)與光合作用(photosynthesis)(二)

昨天說到植物需要的光,主要在紅光跟藍光區;所以,植物的「眼睛」,也就是光受器(photoreceptors),當然要負責監控這兩個波段的光是否存在?夠不夠進行光合作用?

說到這裡可能有人會問,所以光敏素負責看到紅光跟藍光嗎?

讓我們來看一下光敏素的吸收光譜(absorbance spectrum):

光敏素的吸收光譜。圖片來源:wiki
看到上圖大家一定覺得有點怪。不是說要看光敏素的吸收光譜嗎?怎麼會有兩條線?

原來光敏素有兩種構形(conformation),一種是活化態的Pfr,另一種是不具有活性(這部分還有一點點爭議)的Pr。Pfr跟Pr可以互相轉換,所以只能都放在圖上面。

不過,細心的讀者一定會發現,不管是Pfr還是Pr,它們的吸收光譜好像都集中在紅光區?

是的。因為紅光跟藍光對於植物生理的影響,除了光合作用以外,還有其他的部分;所以植物把感應紅光的責任交給了光敏素,而感應藍光的部分則交給了隱花色素(cryptochrome)與向光素(phototropin)。

而且光敏素除了要感應紅光之外,還要同時感應遠紅光(far-red light,波長為730nm左右)。為什麼也要感應遠紅光呢?因為當植物被光線照射的時候,為了進行光合作用,一定會把紅光跟藍光拿走;於是穿過植物的光,它的紅光跟藍光就大大減少了。

這樣的光,因為紅光與藍光不足,當然不適合植物使用;如若今天有一顆種子剛好在大樹下萌發了,它所接收到的光就會是這樣的。這時候,它要怎麼得知自己目前的狀況,並設法脫離呢?

答案就是:光敏素。因為葉綠素a與葉綠素b不會吸收遠紅光(請回憶一下前一篇文章),而植物的光敏素可以感應紅光遠紅光。說「或」是因為Pr主要感應紅光,Pfr主要感應遠紅光。

我們前面提到,Pfr是具有活性的光敏素。重點來了,當它感應到遠紅光以後,就會轉變成Pr(沒有活性)的光敏素。而Pr感應到紅光以後,就會變成具有活性的Pfr。

看到了嗎?因為光敏素感應到紅光以後會活化成為Pfr,接著就會啟動非常非常多的生化途徑;若Pfr感應到遠紅光則會變成沒有活性的Pr,接著剛才啟動的非常非常多的生化途徑,就會因為光敏素總司令不見了,所以就不再啟動。當然,已經傳出去的命令是不會被取消的;所以我們會看到,把黑暗中萌發的豆芽(專業的說法叫做「白化苗」etiolated seedlings)拿出來照個五分鐘的光,就足以讓豆芽那黃色的本葉變成淡綠色,就是這個原因。

而在大樹下的幼苗,因為透過大樹的光線是紅光少、遠紅光多的,於是體內大部分的光敏素就一直停留在沒有活性的Pr構形,然後幼苗就會開始「長長長長長長長」,一面長一面繼續利用它的光敏素感應,直到找到對的光為止。

從某個角度看來可以這樣說:植物用光敏素做為偵測工具,而這個偵測工具是拿遠紅光來做為「參考」光,經由比對收到的光裡面有多少紅光,再拿來跟收到的遠紅光相比(也就是收到光以後多少光敏素轉成Pfr vs. 多少光敏素轉成Pr),以了解這個光的品質好不好。至於說為何光敏素要拿遠紅光來做為「參考」光,而不拿其他葉綠素a與b也不吸收的光(如黃光或綠光)呢?這是個好問題,筆者只能猜測,可能是因為光敏素裡面主要感光的分子phytochromobilin構造上的限制吧!至於真實的原因,我想這是數(十)億年演化的結果,大約也沒有什麼道理好說囉!

留言

  1. 所以光敏植物在夜晚接收到黄光和绿光也可以正常开花?那么在夜晚接收黄光和绿光的植物开出的花的品质,颜色,大小是否会被这两个区间的光所影响?

    回覆刪除

張貼留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...