跳到主要內容

改變D1蛋白的表現方式可以造出耐熱高產的植物

藍綠菌的光系統II。圖片來源:維基百科
光合作用(photosynthesis)是植物所有生物化學反應的中心,它可分為「光反應」(light reaction)與「卡爾文循環」(Calvin cycle)兩部分。

其中的光反應,是由許多蛋白質與色素分子所構成的接力賽:光能由光系統II(photosystem II)或光系統II的天線「捕光複合體II」(LHCII,light harvesting complex II)進入,被光系統II的「反應中心」(reaction center)接收後,反應中心的兩個葉綠素a(chlorophyll a)「丟」出一顆電子給主要電子接受者(primary electron acceptor, pheophytin),開啟了光反應的電子傳遞鏈。

失去了一個電子的葉綠素a,會馬上從光系統II的D1蛋白取得一個電子,讓自己恢復原來的狀態,以準備下一回合的電子傳遞。少了一個電子的D1蛋白,則會由與光系統II緊密連結的產氧複合體(OEC,oxygen evolving complex)取得電子。產氧複合體會等到累積四個正電荷以後,便一次氧化兩個分子的水以取得四個電子,並產生氫離子與氧氣。

因此,光系統II的D1蛋白不斷地失去電子(氧化)、得到電子(還原),造成它每過大約三十分鐘就要換一個新的。D1蛋白也對溫度敏感。由於光系統II不能沒有D1蛋白,這使得D1蛋白成為光系統II能否有效率地執行功能的速率限制分子。

如果能夠改變D1蛋白,讓它耐熱或者讓它的表現量上升,是否能讓光合作用變得更有效率呢?這個想法應該有不少人曾有過,但卡在一個難處:D1蛋白的基因位於葉綠體內(psbA)。要「弄」葉綠體不是一件容易的事!

中國科學院的研究團隊想到:是否可以在細胞核裡面表現D1蛋白,來取代葉綠體的版本呢?他們不只是這麼想了,也這麼做了。由於原來的D1蛋白並不需要被「送」到葉綠體裡面,為了要讓細胞核表現的D1蛋白可以進入葉綠體,研究團隊把D1蛋白基因加上一小段「葉綠體的郵遞區號」,而且他們還把這個改造過的D1蛋白基因連結在一個熱反應啟動子的後面,如此一來當溫度上升時,位於細胞核裡面的psbA基因表現量就會提高。

出乎他們意料之外的是,轉殖植物除了因D1蛋白表現量增加出現產量上升的作用外,它們還特別耐熱。研究團隊測試了擬南芥(Arabidopsis thaliana)、稻米、煙草,發現轉殖擬南芥在攝氏41度下可以存活八個半小時(控制組在同樣的條件下幾乎死光了)。轉殖水稻在2017年上海曾出現攝氏36度的高溫十八天的狀況下,產量比控制組多了將近一成(8-10%)。

更棒的是,在正常溫度下這些轉殖植物的產量也比控制組要多得多。煙草的產量多了快五成(48%),水稻的產量多兩成。

這樣多產又耐熱的植物,正是未來對抗全球暖化的利器。未來如能將這個技術進一步測試於其他農作物上,應該可以幫助更多人!

參考文獻:

Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...