光合作用(photosynthesis)可以說是世界上最偉大的代謝途徑了。如果沒有它,地球上應該是一片沈寂:沒有植物、也沒有動物。
光合作用的核心,是收取光能的葉綠素(chlorophyll)。葉綠素有a、b、c1、c2、d、f六種,除了葉綠素a以外,其他五種的分佈都是比較有限制的。由於葉綠素的構造的關係,它吸收紅光、藍光但是不吸收綠光,所以葉綠素是綠色的。
藍綠藻(cyanobacteria)除了有葉綠素a、d與f之外,還有藻藍蛋白(Phycocyanin)與藻紅蛋白(phycoerythrin)等所構成的輔助色素。由於這些色素蛋白吸收的光波主要在橙、黃、綠波長的位置(500nm-620nm左右),使得藍綠藻在顏色上跟高等植物不同。不過,不管是葉綠素、藻紅蛋白還是藻藍蛋白,利用的都是可見光。
最近賓州州立大學(Penn State)的一群科學家,在溫泉裡面找到一屬藍綠藻Leptolyngbya,這屬的藍綠藻竟然可以使用遠紅光(大於700nm)來進行光合作用!
為什麼科學家們會想到要測試這種藍綠藻使用遠紅光進行光合作用的能力呢?原來它生活在黃石公園附近的LaDuke溫泉中(LaDuke hot spring in Montana, near Yellowstone National Park),上面有2釐米厚的一層細菌。這層細菌隔絕了遠紅光以外所有的光,而這種藍綠藻還能夠生活在這裡,代表它在光合作用上應該有與眾不同的能力。
為了找出這個與眾不同的能力,科學家們將這種藍綠藻在六種不同的光(白光、綠光、紅光、645nm的紅光、710nm的遠紅光、以及遠紅光)下培養之後,再分析它的色素種類與含量。結果發現只有在遠紅光的兩組中發現葉綠素f,而後續的轉錄分析(transcription profiling)顯示,Leptolyngbya藍綠藻可能是經由一個由21個基因組成的集團,來調整在不同光下面的基因表現。
當它暴露在只有遠紅光的環境中時,這21個基因的表現量上昇;而這些基因裡面包含了組成光合作用所需的光系統I、II以及藻膽體(phycobilisome)的蛋白質。相對的,原先用來組成這三個複合體(complex)的基因,他們的表現量在遠紅光下則呈現下降。而蛋白質的分析也確認了在遠紅光下,Leptolyngbya藍綠藻的光系統I、II以及藻膽體裡面的蛋白質已被這21個基因中的部分取代。
也就是說,這種藍綠藻當它的環境只剩下遠紅光可以使用時,它會將與光合作用相關的光系統I、II以及藻膽體重新組合、加入新的蛋白質,以便將自己調整為使用遠紅光來進行光合作用的模式。雖然,藍綠藻早在一百年前就已經被發現,可以依據周圍環境光波長的不同來調整使用的色素(這個現象稱為互補色馴化CCA,complementary chromatic acclimation),但是可以調整成利用遠紅光的模式,倒還是第一遭。
研究團隊在這21個基因集團中找到一個光敏素基因RfpA,雖然他們認為在這種藍綠藻裡面觀察到的遠紅光馴化現象(Far-Red Light Photoacclimation ,FaRLiP)應該是由這個光敏素發動的,但是目前還無法找到缺乏rfpA的突變種,所以這部分也只能說是假說罷了。
有意思的事情是,因為光敏素都是在照射紅光後變為遠紅光吸收態(Pfr),照射遠紅光後變回紅光吸收態(Pr);而這個RfpA蛋白也不例外。但是其他植物的光敏素在Pfr狀態時是有活性的,而Pr狀態實則無。如果RfpA蛋白真如研究團隊所臆測,可以活化這21個基因集團的表現,那麼RfpA到底是哪個型態有活性呢?真是非常的有意思!
(臺大科教中心擁有此文版權,其他單位需經授權始可轉載)
參考文獻:
2014/8/21. Hot-spring bacteria reveal ability to use far-red light for photosynthesis. Science Direct.
Fei Gan, Shuyi Zhang, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, Donald A. Bryan.2014. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.Science. DOI: 10.1126/science.1256963
光合作用的核心,是收取光能的葉綠素(chlorophyll)。葉綠素有a、b、c1、c2、d、f六種,除了葉綠素a以外,其他五種的分佈都是比較有限制的。由於葉綠素的構造的關係,它吸收紅光、藍光但是不吸收綠光,所以葉綠素是綠色的。
葉綠素a。圖片來源:維基百科 |
藍綠藻(cyanobacteria)除了有葉綠素a、d與f之外,還有藻藍蛋白(Phycocyanin)與藻紅蛋白(phycoerythrin)等所構成的輔助色素。由於這些色素蛋白吸收的光波主要在橙、黃、綠波長的位置(500nm-620nm左右),使得藍綠藻在顏色上跟高等植物不同。不過,不管是葉綠素、藻紅蛋白還是藻藍蛋白,利用的都是可見光。
最近賓州州立大學(Penn State)的一群科學家,在溫泉裡面找到一屬藍綠藻Leptolyngbya,這屬的藍綠藻竟然可以使用遠紅光(大於700nm)來進行光合作用!
為什麼科學家們會想到要測試這種藍綠藻使用遠紅光進行光合作用的能力呢?原來它生活在黃石公園附近的LaDuke溫泉中(LaDuke hot spring in Montana, near Yellowstone National Park),上面有2釐米厚的一層細菌。這層細菌隔絕了遠紅光以外所有的光,而這種藍綠藻還能夠生活在這裡,代表它在光合作用上應該有與眾不同的能力。
為了找出這個與眾不同的能力,科學家們將這種藍綠藻在六種不同的光(白光、綠光、紅光、645nm的紅光、710nm的遠紅光、以及遠紅光)下培養之後,再分析它的色素種類與含量。結果發現只有在遠紅光的兩組中發現葉綠素f,而後續的轉錄分析(transcription profiling)顯示,Leptolyngbya藍綠藻可能是經由一個由21個基因組成的集團,來調整在不同光下面的基因表現。
當它暴露在只有遠紅光的環境中時,這21個基因的表現量上昇;而這些基因裡面包含了組成光合作用所需的光系統I、II以及藻膽體(phycobilisome)的蛋白質。相對的,原先用來組成這三個複合體(complex)的基因,他們的表現量在遠紅光下則呈現下降。而蛋白質的分析也確認了在遠紅光下,Leptolyngbya藍綠藻的光系統I、II以及藻膽體裡面的蛋白質已被這21個基因中的部分取代。
也就是說,這種藍綠藻當它的環境只剩下遠紅光可以使用時,它會將與光合作用相關的光系統I、II以及藻膽體重新組合、加入新的蛋白質,以便將自己調整為使用遠紅光來進行光合作用的模式。雖然,藍綠藻早在一百年前就已經被發現,可以依據周圍環境光波長的不同來調整使用的色素(這個現象稱為互補色馴化CCA,complementary chromatic acclimation),但是可以調整成利用遠紅光的模式,倒還是第一遭。
研究團隊在這21個基因集團中找到一個光敏素基因RfpA,雖然他們認為在這種藍綠藻裡面觀察到的遠紅光馴化現象(Far-Red Light Photoacclimation ,FaRLiP)應該是由這個光敏素發動的,但是目前還無法找到缺乏rfpA的突變種,所以這部分也只能說是假說罷了。
有意思的事情是,因為光敏素都是在照射紅光後變為遠紅光吸收態(Pfr),照射遠紅光後變回紅光吸收態(Pr);而這個RfpA蛋白也不例外。但是其他植物的光敏素在Pfr狀態時是有活性的,而Pr狀態實則無。如果RfpA蛋白真如研究團隊所臆測,可以活化這21個基因集團的表現,那麼RfpA到底是哪個型態有活性呢?真是非常的有意思!
(臺大科教中心擁有此文版權,其他單位需經授權始可轉載)
參考文獻:
2014/8/21. Hot-spring bacteria reveal ability to use far-red light for photosynthesis. Science Direct.
Fei Gan, Shuyi Zhang, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, Donald A. Bryan.2014. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.Science. DOI: 10.1126/science.1256963
留言
張貼留言