跳到主要內容

光合作用的爭論與希爾反應(Hill Reaction)

在十七世紀中期的比利時的菲爾普爾德(Vilvoorde,在布魯塞爾附近),有位退休的醫生范‧海爾蒙特(Jan Baptist van Helmont)。說他已經退休,並不代表他老了;事實上,他是因為娶了有錢人家的女兒瑪格麗特(Margaret van Ranst),由於瑪格麗特帶來豐厚的財產,使得他可以早早退休,花更多的時間在他喜歡的研究與自然觀察上。

范‧海爾蒙特。圖片來源:wiki

雖然范‧海爾蒙特是個神秘主義者,對煉金術非常有興趣;但是他也受到同時代的哈維(William Harvey)、伽利略(Galileo Galilei)以及培根(Francis Bacon)等人的影響,對於實證主義(Empiricism)相當的認同。

有一天,他在一個大盆子裡種下一棵柳樹。他把土壤與柳樹都秤重,同時也記錄下他每次加的水的重量。五年以後,他發現柳樹增加了74公斤重,但是土壤的重量幾乎沒有改變。

於是他做了一個結論:植物能把水轉化為它自身的質量。

當然這個結論並不十分正確,但是在當時也已經算是相當大的發現了;後來到十八世紀末瑞士的Jean Senebier與Nicolas-Théodore de Saussure(他同時也發現了植物需要特定元素才能存活)把參與光合作用的基本原料確立下來:水、二氧化碳、光。

但是,當時研究光合作用的人認為,光合作用的產物之一,也就是氧氣,是由二氧化碳產生的(「氣生派」)。現在當然知道這是錯誤的,但是以當時的知識與技術來看,由氣體轉化出氣體,似乎也沒什麼不對。

這個想法,直到Cornelius Bernardus (Kees) van Niel的出現,才被挑戰了。van Niel是一位微生物學家,他研究了兩種光合細菌(綠硫菌與紫硫菌),發現這些菌會產生黃色的元素硫(有些後來接著被氧化),於是提出「光合作用的氧氣不是來自於二氧化碳,而是來自於水」的說法(可以稱這個說法為「水生派」)。

但是畢竟細菌不是植物,所以還是有不少人不相信van Niel的說法。直到Robert Hill發現了Hill Reaction以後,「水生派」才開始佔上風。

Robert Hill,圖片來源:wiki

Robert Hill似乎對自己的名字有些意見,因此他要求大家稱呼他為Robin。他在1922年來到劍橋大學生化所,一開始是研究血紅素。1926年開始研究細胞色素c(cytochrome c)。1932年開始跨足植物界,而且在1937年發現了希爾反應:在提供外加的電子接受者給葉綠體時,葉綠體可以在不消耗二氧化碳、也不產生碳水化合物(也就是不進行卡爾文循環)的狀況下進行光反應並產生氧氣。

由於希爾反應並不消耗二氧化碳,但是還是會產生氧氣;這使得學界意識到,氧氣應該不是來自於二氧化碳,而是來自於水。

不過,有些科學家還是有懷疑。直到Samuel Ruben 與 Martin Kamen在1940年代早期,將用同位素氧18標定的水提供給植物,同位素氧的標記只出現在氧氣而非碳水化合物時,到底氧氣是來自於二氧化碳或是水的爭論,才終於底定。

我們現在在植物生理學實驗中,所做的希爾反應,就是重現當年Robin Hill所做的實驗。

當我們把分離出來的葉綠體放在加入電子接受者(如2,6-Dichlorophenolindophenol,DCPIP)中,並提供光照,由於DCPIP在還原後會由藍色轉為無色,所以就可以從顏色的變化了解到反應的進行;如果使用分光光度計來量化整體顏色的變化,就可以測定出反應速率。

 希爾反應在光照後顏色的變化。藍色是控制組。
photo courtesy: 周帛暄老師

最後要提到的事是,Robin Hill這個人其實非常有意思;雖然他一開始的研究主題是血紅素,但是他的後半生幾乎都奉獻給植物相關的研究,而且對於天然色素非常專精。閒來無事他會畫水彩畫,使用的顏料都是他自己萃取出來的。他在67歲那年(1966年)由劍橋退休,但仍一直研究不輟,直到以91高齡去世。

參考文獻:

Taiz and Zeiger, Plant Physiology, fourth edition.
Wikipedia, Robin Hill, Photosynthesis, C.B. van Niel

留言

這個網誌中的熱門文章

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

植物界的變色龍Boquila trifoliolata如何模仿?

  圖片來源: 維基百科 信不信植物界也有變色龍?原產於南美洲智利中、南部與阿根廷的藤本植物 Boquila trifoliolata 在攀爬到其他樹上時,葉片的形狀會從原本的長鈍橢圓形三出複葉改變為宿主植物的形狀;甚至當它從一種植物攀爬到另一種植物時,葉片的型態也會跟著改變。 過去的研究發現, Boquila trifoliolata 之所以做這樣的改變,可能是因為 可以讓它避免被吃 。但是到底「變色龍藤」是怎麼「看」到它攀爬上去的植物長什麼樣子呢? 最近發表在Scientific Report上的研究發現,「變色龍藤」可能是從「宿主」的菌群(microbiota)得到資料。研究團隊收集了「變色龍藤」模仿「宿主」的葉片上的菌群(BR)、沒有模仿「宿主」的葉片上的菌群(BT),以及「宿主」的菌群(RS)。結果發現,沒有模仿「宿主」的葉片上的菌群(BT)與「宿主」的菌群(RS)之間只有共享了79個獨特的OTU(操作分類單元,可能代表細菌的屬或種),但模仿「宿主」的葉片上的菌群(BR)與「宿主」的菌群(RS)之間卻共享了255個獨特的OTU!更有趣的是,沒有模仿「宿主」的葉片上的菌群(BT)與模仿「宿主」的葉片上的菌群(BR)間也只共享了33個OTU。 這個結果顯示了,「變色龍藤」能模仿「宿主」的型態,與它們之間共享的菌群高度相關。但是究竟「變色龍藤」是如何從這些菌群得到資料?這就有待進一步的研究了。 參考文獻: Gianoli, E., González-Teuber, M., Vilo, C. et al. Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 11, 22673 (2021). https://doi.org/10.1038/s41598-021-02229-8

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。