跳到主要內容

光反應有個「人龍大隊」(bucket-brigade)

光合作用如何能將光能有效地轉換為化學能,一直都是科學家們最感興趣的部分;目前知道,在光系統中的光能傳遞,失去的能量不超過10%,甚至有些科學家估計低於5%。當光能傳遞到光系統反應中心(reaction center)內的兩個葉綠素a時,這兩個葉綠素a會進行「電荷分離」(charge separation),將一個電子傳遞到下一個電子接受者(electron acceptor)。由這個點開始,光能轉換為電能,接著經過光反應的電子傳遞鏈(photophosphorylation)轉換為化學能(能量ATP與電子NADPH)。但是,這中間的機制尚未完全釐清。

最近,美國密西根大學(University of Michigan)生物物理研究團隊,使用了短脈衝光來窺視光合作用的機制,並闡明了分子振動(molecule vibrations)在地球的能量轉換過程上所扮演的角色。

這個發現可以幫助工程師們做出更高效的太陽能電池以及能源貯存系統。他們還為一個量子生物學(quantum biology)爭論注入了新的證據:究竟光合作用是如何達成這麼高的效率。

植物和一些細菌經由光合作用將陽光、水和二氧化碳轉化為自己(和其他生物)的食物,以及提供生物呼吸的氧氣。光合作用也許是地球上最重要的生化過程,但是科學家到現在還是沒有完全理解它的機制。

密西根大學團隊的研究結果發現,光合作用開始時的電荷分離,需要特定的分子振動來幫助進行。

無論是自然和人工光合作用系統,都需要利用吸收的光能,並將其轉換為電荷分離。在自然光合作用時,電荷分離最後會產生生化能量(筆者按:產生ATP與NADPH,最終用於產生醣類。)。在人工系統中,我們希望可以將電荷分離的能量拿來發電,或轉換為如生物燃料(biofuels)等其它一些可用的能源。

眨眼只需要大約三分之一秒,但是電荷分離只需要10皮秒(picosecond,兆分之一秒)。研究團隊開發出超短激光脈衝,可以匹配上光合作用電荷分離反應的速度。利用超短激光脈衝以及仔細定時序列,研究團隊能夠起動光合作用,然後拍攝即時快照。

研究團隊由菠菜中分離了光系統II的反應中心(photosystem II reaction centers)。光系統II位於植物細胞的葉綠體中,由一群蛋白質與色素組成;它也是目前唯一已知的自然酶,可以使用太陽能將水分解成氫氣和氧氣。

非常多人對光系統II的反應中心感興趣,因為它的電荷分離過程效率很高。 在人工系統中,雖然有很多可以吸光的分子提供選擇,也可以創造電荷分離系統,但是卻很難讓電荷分離維持一個夠長的時間來作功。但是,在光系統II的反應中心,這個問題已經被植物漂亮的解決了。

研究團隊記錄的光譜信號含有長效相呼應(long-lasting echoes),那透露了,在電荷分離時發生了特定的振動。

研究團隊所發現的是,當能階的差距與振動頻率接近時,電荷分離就會提高,就如人龍大隊(bucket-brigade)一樣,能夠輸送多少水,取決於每個人在正確的時間點作正確的動作。

光反應的電子傳遞,從一開始的電荷分離,就有如人龍大隊;
所有的成員都要在相近的頻率下進行動作,來達成高效率。
圖片來源:維基百科

這個研究成果,可以回饋給設計光電池的團隊,做為未來設計的參考。


參考文獻:

2014/7/13. Deep within spinach leaves, vibrations enhance efficiency of photosynthesis -- ScienceDaily

留言

這個網誌中的熱門文章

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

植物界的變色龍Boquila trifoliolata如何模仿?

  圖片來源: 維基百科 信不信植物界也有變色龍?原產於南美洲智利中、南部與阿根廷的藤本植物 Boquila trifoliolata 在攀爬到其他樹上時,葉片的形狀會從原本的長鈍橢圓形三出複葉改變為宿主植物的形狀;甚至當它從一種植物攀爬到另一種植物時,葉片的型態也會跟著改變。 過去的研究發現, Boquila trifoliolata 之所以做這樣的改變,可能是因為 可以讓它避免被吃 。但是到底「變色龍藤」是怎麼「看」到它攀爬上去的植物長什麼樣子呢? 最近發表在Scientific Report上的研究發現,「變色龍藤」可能是從「宿主」的菌群(microbiota)得到資料。研究團隊收集了「變色龍藤」模仿「宿主」的葉片上的菌群(BR)、沒有模仿「宿主」的葉片上的菌群(BT),以及「宿主」的菌群(RS)。結果發現,沒有模仿「宿主」的葉片上的菌群(BT)與「宿主」的菌群(RS)之間只有共享了79個獨特的OTU(操作分類單元,可能代表細菌的屬或種),但模仿「宿主」的葉片上的菌群(BR)與「宿主」的菌群(RS)之間卻共享了255個獨特的OTU!更有趣的是,沒有模仿「宿主」的葉片上的菌群(BT)與模仿「宿主」的葉片上的菌群(BR)間也只共享了33個OTU。 這個結果顯示了,「變色龍藤」能模仿「宿主」的型態,與它們之間共享的菌群高度相關。但是究竟「變色龍藤」是如何從這些菌群得到資料?這就有待進一步的研究了。 參考文獻: Gianoli, E., González-Teuber, M., Vilo, C. et al. Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 11, 22673 (2021). https://doi.org/10.1038/s41598-021-02229-8

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。