跳到主要內容

光反應有個「人龍大隊」(bucket-brigade)

光合作用如何能將光能有效地轉換為化學能,一直都是科學家們最感興趣的部分;目前知道,在光系統中的光能傳遞,失去的能量不超過10%,甚至有些科學家估計低於5%。當光能傳遞到光系統反應中心(reaction center)內的兩個葉綠素a時,這兩個葉綠素a會進行「電荷分離」(charge separation),將一個電子傳遞到下一個電子接受者(electron acceptor)。由這個點開始,光能轉換為電能,接著經過光反應的電子傳遞鏈(photophosphorylation)轉換為化學能(能量ATP與電子NADPH)。但是,這中間的機制尚未完全釐清。

最近,美國密西根大學(University of Michigan)生物物理研究團隊,使用了短脈衝光來窺視光合作用的機制,並闡明了分子振動(molecule vibrations)在地球的能量轉換過程上所扮演的角色。

這個發現可以幫助工程師們做出更高效的太陽能電池以及能源貯存系統。他們還為一個量子生物學(quantum biology)爭論注入了新的證據:究竟光合作用是如何達成這麼高的效率。

植物和一些細菌經由光合作用將陽光、水和二氧化碳轉化為自己(和其他生物)的食物,以及提供生物呼吸的氧氣。光合作用也許是地球上最重要的生化過程,但是科學家到現在還是沒有完全理解它的機制。

密西根大學團隊的研究結果發現,光合作用開始時的電荷分離,需要特定的分子振動來幫助進行。

無論是自然和人工光合作用系統,都需要利用吸收的光能,並將其轉換為電荷分離。在自然光合作用時,電荷分離最後會產生生化能量(筆者按:產生ATP與NADPH,最終用於產生醣類。)。在人工系統中,我們希望可以將電荷分離的能量拿來發電,或轉換為如生物燃料(biofuels)等其它一些可用的能源。

眨眼只需要大約三分之一秒,但是電荷分離只需要10皮秒(picosecond,兆分之一秒)。研究團隊開發出超短激光脈衝,可以匹配上光合作用電荷分離反應的速度。利用超短激光脈衝以及仔細定時序列,研究團隊能夠起動光合作用,然後拍攝即時快照。

研究團隊由菠菜中分離了光系統II的反應中心(photosystem II reaction centers)。光系統II位於植物細胞的葉綠體中,由一群蛋白質與色素組成;它也是目前唯一已知的自然酶,可以使用太陽能將水分解成氫氣和氧氣。

非常多人對光系統II的反應中心感興趣,因為它的電荷分離過程效率很高。 在人工系統中,雖然有很多可以吸光的分子提供選擇,也可以創造電荷分離系統,但是卻很難讓電荷分離維持一個夠長的時間來作功。但是,在光系統II的反應中心,這個問題已經被植物漂亮的解決了。

研究團隊記錄的光譜信號含有長效相呼應(long-lasting echoes),那透露了,在電荷分離時發生了特定的振動。

研究團隊所發現的是,當能階的差距與振動頻率接近時,電荷分離就會提高,就如人龍大隊(bucket-brigade)一樣,能夠輸送多少水,取決於每個人在正確的時間點作正確的動作。

光反應的電子傳遞,從一開始的電荷分離,就有如人龍大隊;
所有的成員都要在相近的頻率下進行動作,來達成高效率。
圖片來源:維基百科

這個研究成果,可以回饋給設計光電池的團隊,做為未來設計的參考。


參考文獻:

2014/7/13. Deep within spinach leaves, vibrations enhance efficiency of photosynthesis -- ScienceDaily

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...