跳到主要內容

「看見」工作中的OEC

光合作用(photosynthesis)應該是世界上最偉大的代謝途徑(metabolic pathway)了;當地球最初合成的時候,原始大氣並不含氧。一直到25億年前,開始有了光合作用以後,出現了氧氣,讓地球產生了天翻地覆的變化,總稱為「大氧化事件」(GOE, Great Oxygenation Event)。

什麼樣的變化呢?首先,氧氣的出現使得專性厭養菌(obligate anaerobes)大量死亡、滅絕;這由某個角度來看,應該可以算是地球上的第一個大滅絕事件,可以稱之為「成鐵記」(Siderian)滅絕事件。第二,氧氣的出現使得好氧生物得以出現,由於「燃燒」(氧化)所產生的能量遠大於其他形式,好氧生物出現以後,迅速取得優勢。第三,氧氣出現以後,因為太陽輻射的關係,形成了臭氧層,而臭氧層可以吸收200-310 nm的光,這部分是部分的UVC與UVB,致突變的能力很高,臭氧層隔絕了它們以後,地球上生物的演化速度進入了相對穩定的狀態。

當然,光合生物的出現(當時主要是藍綠菌cyanobacteria)也造成大氣中二氧化碳(CO2)的減少,而氧氣的出現又使得甲烷(CH4)大量減少。這兩種溫室氣體的減少,使得地球在24億年前進入了長達三億年的休倫冰河期(Huronian glaciation)。在那三億年中,地球就像一個大冰球;等到休倫冰河期結束後,世界已經完全不同了。

由這裡,可以了解到光合作用對這個世界的影響有多大。近年來,因為石油、煤、天然氣等不可再生的能源都已經逐漸耗竭,科學家們又想到最便宜(基本上是不要錢)的能源--日光。

要怎麼利用日光呢?基本上來說,除了發展太陽能電池以外,其實也有許多科學家一直在想辦法模仿植物的光合作用;因為植物的光合作用不需要消耗礦產以及其他能源,只需要合成一些蛋白質,就可以在常溫下獲取日光的能量來合成有機分子。直接的產物是三碳糖(glyceraldehyde 3-phosphate),間接的產物是葡萄糖(glucose)與蔗糖(sucrose)。

而植物光反應中的OEC(oxygen evolving complex)更是引起研究者的興趣。到目前為止,OEC還是自然界唯一可以在常溫下分解水的蛋白質複合體(protein complex);如果可以將這個能力應用到發電上面,科學家們可以將光能轉變為氫氣,或是直接將光能轉換為化學能。

但是,要作這些需要對OEC有更多的了解。最近,亞利桑納州立大學(Arizona State University)的研究團隊,運用飛秒X光雷射(femtosecond X-ray laser),第一次看到了OEC的工作情形(1)。

過去對OEC的了解知道,這個蛋白質複合體中含有由四個錳離子(maganese ion, Mn2+)與一個鈣離子(calcium ion, Ca2+)組成的金屬核心(Mn4CaO5 metal cluster)。OEC與光系統II (Photosystem II)相連,每次光系統II接受一次光的刺激,OEC便提供一個電子給光系統II,而OEC自己便累積一價正電。這個正電荷由錳離子儲存,等到有四價正電時,OEC利用這四價正電,分解2個分子的水,產生一個分子的氧氣、四個氫離子(H+)以及四個電子(electron, e-)。

過去曾有研究團隊試圖以結晶的方式了解OEC。但是,觀察OEC的結晶結構並不能了解OEC的工作情形,而且有時光是結晶的過程就可能會對OEC的結構產生破壞,而這樣的結果只會誤導研究者。

這次,亞利桑納州立大學的研究團隊,使用了能源部的飛秒X光雷射來觀察OEC的動態。研究團隊觀察到,當OEC捐出了第二個電子給光系統II以後,它的金屬核心產生了變形的現象--具體來形容的話,就是金屬核心最外圍的錳離子與其他成員之間的距離拉長,使得第二個水分子可以進入OEC。

OEC在工作中會經歷五個狀態:S0, S1, S2, S3 與 S4。
黑框框顯示的是其中兩個時期的狀態。
圖片來源:ScienceDirect
同一時間,另一個在柏克萊的研究團隊(3)也使用了飛秒X光雷射,看到了由S3到S0的OEC變化狀態。

研究團隊們都希望,未來可以利用這個技術,逐步建立起整個OEC的工作動態;經過詳細了解OEC如何工作,可以幫助開發太陽能科技的研究團隊設計出更好的光電池。

參考文獻:

1. 2014/7/9. First snapshots of water splitting in photosynthesis -- ScienceDaily
2. Christopher Kupitz, Shibom Basu et. al., 2014. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature.
3. 2014/7/9. Postcards from the photosynthetic edge: Femtosecond snapshots of photosynthetic water oxidation -- ScienceDaily

留言

這個網誌中的熱門文章

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

植物界的變色龍Boquila trifoliolata如何模仿?

  圖片來源: 維基百科 信不信植物界也有變色龍?原產於南美洲智利中、南部與阿根廷的藤本植物 Boquila trifoliolata 在攀爬到其他樹上時,葉片的形狀會從原本的長鈍橢圓形三出複葉改變為宿主植物的形狀;甚至當它從一種植物攀爬到另一種植物時,葉片的型態也會跟著改變。 過去的研究發現, Boquila trifoliolata 之所以做這樣的改變,可能是因為 可以讓它避免被吃 。但是到底「變色龍藤」是怎麼「看」到它攀爬上去的植物長什麼樣子呢? 最近發表在Scientific Report上的研究發現,「變色龍藤」可能是從「宿主」的菌群(microbiota)得到資料。研究團隊收集了「變色龍藤」模仿「宿主」的葉片上的菌群(BR)、沒有模仿「宿主」的葉片上的菌群(BT),以及「宿主」的菌群(RS)。結果發現,沒有模仿「宿主」的葉片上的菌群(BT)與「宿主」的菌群(RS)之間只有共享了79個獨特的OTU(操作分類單元,可能代表細菌的屬或種),但模仿「宿主」的葉片上的菌群(BR)與「宿主」的菌群(RS)之間卻共享了255個獨特的OTU!更有趣的是,沒有模仿「宿主」的葉片上的菌群(BT)與模仿「宿主」的葉片上的菌群(BR)間也只共享了33個OTU。 這個結果顯示了,「變色龍藤」能模仿「宿主」的型態,與它們之間共享的菌群高度相關。但是究竟「變色龍藤」是如何從這些菌群得到資料?這就有待進一步的研究了。 參考文獻: Gianoli, E., González-Teuber, M., Vilo, C. et al. Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 11, 22673 (2021). https://doi.org/10.1038/s41598-021-02229-8

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。