跳到主要內容

槲寄生(mistletoe)的電子傳遞鏈

 

圖片來源:維基百科

由於聖誕節在歐美各國就等於我們的春節,在國外唸書那些年遇到聖誕節多半都是自己過。不過也曾有幾次被在地的朋友們邀請一同過節,發現他們有個風俗十分有趣。

他們會在家中選一個最多人出入的門楣,在上面掛上槲寄生(mistletoe);如果剛好是一男一女一起走過,就一定要親一下(據說女性如果拒絕會有惡運…不知道是誰的惡運囉?)。另一種說法:聖誕節時掛槲寄生在門楣上,會讓經過的人有好運氣。

一般提到槲寄生通常就是指原產於英國與歐洲的歐洲槲寄生(European Mistletoe,Viscum album),它是檀香科(Santalaceae)雙子葉半寄生植物。說它們是半寄生,主要是因為它們還有葉綠體,可以進行一些光合作用;但有一些研究發現,它們從宿主取得的碳,佔自身所需比例的八成。也因此,有些宿主在被它寄生後會出現生長遲緩的現象,嚴重時甚至會死亡。

如果槲寄生總是可以從宿主得到這麼多養分,為什麼它還要自己進行光合作用與全部的細胞呼吸作用呢?

過去曾有在寄生生物上發現它們只有不完整的電子傳遞鏈、或甚至完全不具有電子傳遞鏈的例子:如微孢子蟲(Microsporidia)就不具有電子傳遞鏈、雙鞭毛蟲(dinoflagellates)只有不完整的電子傳遞鏈、我們很熟悉的酵母菌也沒有電子傳遞鏈的蛋白質複合體I(complex I,NADH dehydrogenase,NADH 去氫酶)等。不過,這些都是單細胞生物。如槲寄生這類的半寄生高等植物,是否也會因為生活形態而不再具有完整的細胞呼吸作用途徑呢?

最近的研究發現:槲寄生的確只具有不完整的細胞呼吸作用途徑。或者更進一步來說,槲寄生的電子傳遞鏈是不完整的。由於其它部分的細胞呼吸作用(醣解作用與檸檬酸循環)除了產生能量之外,對生物的基礎代謝也很重要,因此生物很難不具有它們;但是電子傳遞鏈只有產生能量的功能,只要能想辦法把醣解作用與檸檬酸循環等氧化反應所產生的電子(主要是NADH)給消耗掉,不讓細胞因為NAD+濃度太低影響到氧化還原反應的進行,就OK啦!

這個發現是同時由漢諾威大學(University of Hannover)與約翰英納斯中心(John Innes Centre)的兩個研究團隊完成的。說來有趣,這兩個研究團隊的主持人:布勞恩(Hans-Peter Braun)與梅爾(Etienne H. Meyer)不約而同注意到有幾個研究發現:槲寄生的粒線體基因體中,缺少了該有的九個蛋白質複合體I的次單元,而決定要作進一步的研究。

蛋白質複合體I是電子傳遞鏈中最大的蛋白質複合體。在被子植物中,蛋白質複合體I共由49個次單元構成,其中40個的基因位於細胞核中,另外9個的基因則位於粒線體的基因體上。兩個不同的研究團隊定序了幾種不同的檞寄生以後都發現:在它們的粒線體基因體中,找不到那九個基因。

當然,粒線體裡面找不到並不代表檞寄生就一定沒有蛋白質複合體I;不能排除的可能性是:在檞寄生中,這九個基因或許轉移到細胞核裡面了。雖然這樣的可能性不高,但科學研究就是這麼累人,如果真的想證明「槲寄生沒有蛋白質複合體I」,那麼要不就得想辦法證明槲寄生的基因體(包括細胞核、粒線體與葉綠體)的確沒有這九個基因、要不就要證明槲寄生的細胞內的確沒有蛋白質複合體I的存在。

這兩個實驗室不約而同地選擇了後者。他們利用非變性蛋白質電泳技術先將槲寄生的蛋白質分開,再以質譜儀分析這些蛋白質後發現:槲寄生蛋白質體中的確找不到蛋白質複合體I。除了缺少蛋白質複合體I之外,槲寄生的蛋白質複合體II(complex II,Succinate dehydrogenase,琥珀酸去氫酶)以及蛋白質複合體V(complex V,ATP synthase,ATP合成酶)的量也大大減少。

當約翰英納斯中心的研究團隊使用一號碳標定的葡萄糖或是三號/四號碳標定的葡萄糖觀察槲寄生與阿拉伯芥的碳代謝時發現:槲寄生會優先利用一號碳。利用一號碳代表磷酸五碳糖途徑(PPP,pentose phosphate pathway)正在運轉,意味著反應來自於醣解作用;利用三號/四號碳代表丙酮酸脫羧酶等酵素正在運作,則意味著反應來自於檸檬酸循環。如果細胞釋出的二氧化碳來自一號碳與三號/四號碳各半(如阿拉伯芥),則代表細胞對醣解作用的依賴性不深;但槲寄生所釋出的二氧化碳來自一號碳的為三號/四號碳的二至三倍,這意味著細胞因為某些原因(在檞寄生就是因為電子傳遞鏈殘缺不全),造成它對醣解作用相當依賴。總括來說,基因體分析、蛋白質體分析以及代謝動力學分析的結果都指向同一個結論:檞寄生的確沒有完整的電子傳遞鏈,而這使得它相當依賴醣解作用。

這個發現告訴我們,對於寄生/半寄生生物來說,雖然養分不需要自己製造,但它們還是選擇將「用不到」的基因給淘汰掉,為什麼呢?或許少合成一些不需要的東西,對於寄生生物來說,還是具有競爭上的優勢吧?

參考文獻:

5/3/2018. Science Daily. Mistletoe has lost 'most of its respiratory capacity'.

Andrew E. Maclean, Alexander P. Hertle, Joanna Ligas, Ralph Bock, Janneke Balk, Etienne H. Meyer. Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Current Biology, 2018; DOI: 10.1016/j.cub.2018.03.036

Jennifer Senkler, Nils Rugen, Holger Eubel, Jan Hegermann, Hans-Peter Braun. Absence of Complex I Implicates Rearrangement of the Respiratory Chain in European Mistletoe. Current Biology, 2018; DOI: 10.1016/j.cub.2018.03.050

留言

  1. 作者已經移除這則留言。

    回覆刪除
  2. 錯了一個字,槲寄生,不是檞

    回覆刪除
  3. 少合成不必要的東西也就減少浪費,也就可以少吸收一些宿主的營養,減少宿主的死亡率也就是增加自己的生存率。所以寄生都向著共生方向發展?

    回覆刪除

張貼留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N