跳到主要內容

農業可能起源於兩萬三千年前

人類什麼時候開始學會種田的?考古學的證據,說是一萬兩千年前。

不過,最近在加利利海濱(Sea of Galilee)的發現,可能要把這個時間往前推個一萬一千年!

怎麼說呢?

當考古學家找到可能的古文明遺跡時,要怎麼判別「古人」們是過著狩獵/採集生活,或是農耕生活?

在遺跡發現植物的種子/果實並不能代表古人的確已經開始種田,頂多意味著他們會把種子/果實帶回居住地食用或保存;如果在遺跡發現的種子/果實的大小、型態與野生種有別,這當然就代表著,住在這裡的居民們過著農耕生活。

這是所謂的「馴化症候群」(domestication syndrome)。由於人類有意識或潛意識的選擇,使得動/植物在被人類馴化後,型態會產生變化:如植物可食的部位(果實、葉片或根/塊莖)變大、動物則會出現體型變小以適應圈養的生活形態等。

但是這些變化並非一蹴可幾,而是要歷經數十代乃至數百代的繁殖與選拔才能達成。因此,是否有可能當我們發現古人類的遺跡時,雖然他們已經開始種植植物,但這些植物仍近似於野生種,使我們下了錯誤的判斷,認為他們還過著狩獵/採集的生活呢?

當然無法排除這個可能性,所以來自以色列的研究團隊開發了另一個判斷的標準:雜草!

雜草?是的。雖然農夫們提到雜草無不恨得牙癢癢的,但是這些農夫欲除之而後快的有害植物,其實也是在我們的農耕行為中,跟農作物一起演化出來的。

怎麼說呢?人類在種田的時候會翻土、施肥。翻土破壞了土壤結構,施肥使得土壤中的有機質組成改變。翻土破壞了土壤結構,使得植物為了適應翻鬆的土壤,必需要發展出快速的吸水能力;而施肥會使土壤中的特定礦物質(尤其是氮元素)大大增加。雖然氮元素是植物生長所必需,可是也並非所有植物都喜歡高氮的環境。

因此,人類在開始農耕後選出來的農作物品種,當然都是吸水能力佳、喜愛高氮肥環境的農作物;而能夠在農田裡活下來、與農作物競爭一席之地的雜草,當然也要發展出這些能力,而且一定要有過之而無不及,否則便不能與農作物一較長短囉!

但是很少研究者注意到雜草,或者說,試圖去研究雜草的演化。雖然大家都同意,在古文明的遺跡附近,如果伴隨著雜草種子大量出現,代表古人很有可能曾經在這個地區進行過農業行為;但是究竟雜草在何時何地發源,大家還是沒多大興趣。

在這篇研究裡,研究團隊們找到了位於加利利海濱的Ohalo II。這個區域在過去一直都被水淹沒,直到連續幾年的乾旱使得湖水大幅下降後,才在1989年被發現。歷經六個季節的挖掘(1989-1991,1998-2001),研究團隊在當地找到六間小屋,其中四間非常仔細的研究過。

因為過去一直都被淹沒在水中,因此這個遺址保存得非常完整。在這些小屋中、以及周圍,研究團隊找到了大約有十五萬顆的種子。其中,超過三分之一是屬於禾本科(Poaceae),包括了野生的二粒麥(emmer wheat)、大麥(barley)與燕麥(oat)。小屋中也有將種子磨粉的工具,而許多種子就散佈在磨粉工具的周圍。

由垃圾堆裡面出現的候鳥的遺骸以及小屋中儲存的植物果實/種子,研究團隊認為,這裡的居民是定居社群。甚至還出現了家鼠(Mus musculus)與大鼠(Rattus rattus)呢!

在這十五萬顆種子中,有十分之一的種子來自十三種雜草。其中有九成三是毒麥(Lolium temulentum,darnel)以及玉米殃(Galium tricornutum)。

毒麥。圖片來源:Wiki

這兩種植物是田裡常見的雜草,尤其是毒麥,因為結果前的型態與小麥極為相似,因此也被稱為「假麥」(false wheat)。農夫們對它深惡痛絕,因為當它被Neotyphodium屬的真菌感染後,果實會產生生物鹼(loline alkaloid),如果誤食會導致中毒,嚴重可以致命!因此,在收穫前必需要特別留意將它拔除。

這些雜草也曾在目前公認最早的農業發源地黎凡特(Levant)發現,但由於黎凡特附近找不到這兩種雜草,表示這兩種雜草可能並不是發源在當地。在Ohalo II發現大量的毒麥與玉米殃,顯示這兩種雜草可能的確是發源於此。

除了毒麥與玉米殃之外,研究團隊還辨認出了另外四種雜草:藜(Chenopodium album)、小花錦葵(Malva parviflora)、敘利亞薊(Notobasis syriaca)與水飛薊(Silybum marianum)。這四種雜草也是目前當地常見的雜草。

除了雜草以外,當然其它的九成都是農作物囉!除了前面提到的二粒麥、大麥、燕麥之外,還有豌豆、扁豆、杏仁、無花果、葡萄與橄欖。但是究竟有多少是來自人類的農業行為,有多少是採集而來就不得而知了。不過,研究團隊觀察到,有四分之一的二粒麥以及三成六的大麥的穗軸(rachises)出現馴化的禾本科植物的特徵:粗糙的斷裂痕跡。

野生種與馴化種的穗軸。
圖片來源:Plant Physiology and Development, 6th ed.

由於人類在馴化植物的過程中,無意識地選擇了不會落果的突變種。但是野生種禾本科植物,在果實成熟後就會自然掉落。這是因為穗軸上有由薄壁細胞構成的離層(abscission zone),在果實成熟後就會自然衰老萎縮,讓果實掉落以完成傳播的目的。但是會落果的品種不利於收穫,因此在馴化的過程中,最後留在人類手中的是不落果的品系。不會落果當然在收穫後就需要把種子由穗軸上「打」下來,而這個過程會使得穗軸出現粗糙的斷裂痕跡。

過去的認定是,只要在遺址找到的農作物有十分之一出現這樣的特徵,大家就承認這些植物已被馴化。因此,在Ohalo II找到的大麥與二粒麥,應該的確是馴化的品系無誤。

綜合了所有這些證據,再加上研究團隊在當地小屋中找到燧石製成的鐮刀,在在都顯示了,Ohalo II的確有農業行為;而馴化品系的出現,也將農業起源的時間往前推了一萬一千年!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Snir A, Nadel D, Groman-Yaroslavski I, Melamed Y, Sternberg M, Bar-Yosef O, et al. (2015) The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming. PLoS ONE 10(7): e0131422. doi:10.1371/journal.pone.0131422

Plant Physiology and Development, Sixth Edition by Lincoln Taiz, Eduardo Zeiger, Ian M. Møller, and Angus Murphy, published by Sinauer Associates

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-No...