跳到主要內容

卡氏帶(Casparian Strip)不簡單!

卡氏帶(靠近圖片中央橫貫細胞的透明條帶)。
圖片來源:Wiki
生物學裡面提到植物根部的構造時,一定會提到「卡氏帶」(Casparian Strip)。卡氏帶是由十九世紀的德國植物學家羅伯特‧卡斯帕里(Johann Xaver Robert Caspary,1818-1887)所發現的,是以木質素(lignin)聚合物在植物根部的內皮細胞(endodermal cell)上形成的環狀結構。

過去的許多觀察結果告訴我們,卡氏帶對於植物根部水分與礦物質的吸收很重要。所有水溶性的物質在土壤中可以透過質外路徑(apoplastic route)或共質體路徑(symplastic route)進入根部。質外路徑指得是細胞壁以及細胞壁之間的空間,共質體路徑則是原生質。但不論是藉由質外路徑或共質體路徑進入的水分與礦物質,在即將進入根部的維管束時,一定會遇到由厭水性的木質素構成圍繞在維管束內皮細胞上的卡氏帶,便會全部改由共質體路徑進入維管束的導管(xylem)(如下圖)。

植物根部水分與礦物質的運輸。圖片來源:Wiki
過去對卡氏帶形成的研究已經找到了一些與卡氏帶形成相關的基因,包括CASP家族蛋白(Casparian strip membrane domain protein)與GASSHO1/SCHENGEN3(簡稱GSO1/SGN3)。從蛋白質的結構分析看來,GSO1/SGN3被認為可能是一個小分子肽賀爾蒙的受器。科學家們發現,當他們把GSO1/SGN3剔除後,CASP家族的表現呈現不連續的狀態,卡氏帶也一樣斷斷續續。

究竟GSO1/SGN3是不是小分子肽賀爾蒙的受器呢?是否真有小分子肽賀爾蒙掌管卡氏帶的形成?日本的研究團隊搜尋阿拉伯芥(Arabidopsis thaliana)的基因體,找到了兩個可能就是小分子肽賀爾蒙的基因。以這兩個基因搜尋其他植物的基因體發現,它們在陸生植物中分佈得極為廣泛。於是研究團隊用化學交聯(chemical crosslink)的方式,用其中一個基因預測的小分子肽為釣竿,來找出與這兩個基因的產物有互動的基因。

結果他們除了找到GSO1/SGN3(BINGO!)以外,還找到另一個基因GSO2。進一步測試顯示,這兩個基因與GSO1/SGN3以及GSO2的互動是有專一性的,且它們只表現在根部。所以,植物卡氏帶的形成,真的與小分子肽賀爾蒙有關!

接著研究團隊找到了缺少這兩個基因的突變植物。同時缺少這兩個基因的植物呈現與缺少GSO1/SGN3以及GSO2類似的性狀,但與 gso1/sgn3 gso2 雙突變株不同的是,當研究團隊把其中一個基因的產物加入一起培養時,少了這兩個基因的雙突變株可以恢復正常;而且只需要 1 奈莫爾 (1 nM)的小分子肽就夠了。研究團隊到此確認,這兩個基因應該就是形成卡氏帶所需要的小分子肽賀爾蒙,便將之命名為 CIF1 與 CIF2(CIF是卡氏帶完整因子 Casparian strip integrity factor的意思)。

研究團隊進一步以 cif1/cif2 雙突變株進行測試發現,以 CIF1 多肽處理後五小時,就可以看到CASP家族蛋白的表現出現不連續的狀態。在以 CIF1 多肽處理二十四小時後,再放回沒有 CIF1 多肽的培養基二十四小時,CASP家族蛋白的表現又出現不連續的狀態了。也就是說,卡氏帶不是像我們以前認知的,只是一個靜態的構造!要讓內皮細胞一直有卡氏帶在上面,需要有 CIF1 與 CIF2 這兩個多肽不斷地分泌呢!

不過,到底缺乏 CIF1 與 CIF2 兩個基因的植物,是否在礦物質的吸收上有缺陷呢?過去的一些研究發現,缺少 GSO1/SGN3 的植物,很容易出現鉀離子缺乏的症狀。當研究團隊把 cif1/cif2 雙突變株養在高鐵的環境中,雙突變株在 300 μM鐵離子時即開始出現生長停滯的狀態,當鐵離子濃度上昇到 500 μM(此時野生種尚未出現病徵)時,雙突變株的生長嚴重停滯且葉片變為紅褐色。偵測雙突變株的導管液也發現,在相同的鐵離子濃度下,雙突變株的導管液中的鐵離子濃度比野生種要高,顯示雙突變株無法阻止外界過多的鐵離子進入植物。這個現象在pH值降低(環境變酸)時,由於鐵離子的溶解度在偏酸的環境下提高,會變得更明顯。但只要把 CIF1 多肽加到培養基中即可恢復正常。

至於鉀離子的吸收則呈現相反的狀態。當研究團隊把雙突變株養在低鉀的狀態下,植物開始出現生長停滯的狀態,而雙突變株導管液中的鉀離子濃度比野生種要低,顯示雙突變株無法阻止導管內的鉀離子離開植物。

所有的這些發現都告訴我們:卡氏帶對於控制礦物質進出根部的維管束非常重要;不僅是卡氏帶的形成一定要有小分子多肽賀爾蒙以及它的受器,卡氏帶的維護也需要有源源不絕的小分子多肽賀爾蒙。後者顛覆了我們對卡氏帶的認知,也顯示了我們身邊的一些看似簡單的現象,其實比我們想像的要複雜太多了。除此之外, CIF1 與 CIF2 這兩個多肽的功能,可能不僅只有卡氏帶的形成與維護:研究團隊發現, cif1/cif2 雙突變株比 gso1/sgn3 gso2 雙突變株多了角質(cuticle)的缺陷。未來對於卡氏帶的功能有更多的工作等著大家來完成,而關於 CIF1 與 CIF2 的功能研究應該也很有得忙呢!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Takuya Nakayama et. al., A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 20 Jan 2017: Vol. 355, Issue 6322, pp. 284-286 DOI: 10.1126/science.aai9057

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...