跳到主要內容

在家合成鴉片可能嗎?

鴉片(opium)是鴉片罌粟(Papaver somniferum)蒴果的分泌物乾燥後的成品。

鴉片罌粟的花。圖片來源:wiki
或粉紅、或白的罌粟花,花瓣落盡後蒴果形成;工人一般在黃昏採收(1),用刀子割破蒴果。蒴果的乳白色汁液在夜晚滲出、凝結,因氧化作用轉為褐色。

鴉片罌粟的蒴果與乳汁。圖片來源:wiki
第二天,工人小心的剝下褐色乾燥的片狀物,曬乾或陰乾後,就是鴉片。

鴉片是混合物,裡面的主要成分是嗎啡(morphine),另外還有可待因(codeine)與蒂巴因(thebaine)。

嗎啡。圖片來源:wiki
嗎啡在十九世紀初(1803-1805年間)由賽特內爾(Friedrich Sertürner)分離出來;在1827年由默克(Merck)將它商品化。嗎啡的出現,加速了醫療上這類的產品的使用。過去只有鴉片可用的時代,因為容易摻混、造假,造成在治療上使用的困難;現在有了純物質,醫生在控制劑量上變得容易許多。等到1853年伍德(Alexander Wood)發明皮下注射嗎啡後,嗎啡的使用量與範圍變得更廣。

從十九世紀到現在,化學合成技術的進步已經使許多天然化合物可以在實驗室中合成;但是,鴉片中的任何成分,嗎啡也好、可待因、蒂巴因也好,還是都要依賴鴉片罌粟為我們生產。合成它們,是那麼的困難嗎?

其實在1952年,嗎啡的化學合成便已經由Marshall D. Gates, Jr.完成了。要合成嗎啡,總共需要31個步驟,總產量大約只有0.06%。後來在1980年,由Kenner C. Rice以不同的化合物為原料,只用了14個步驟就合成了嗎啡,總產量達到30%(2)。

後來也有許多不同的實驗室想要改進製程。由於不論是Gates、Rice或是其他的研究團隊,都找不到方法由簡單的化合物開始合成,造成在實驗室中合成嗎啡的成本,比種植罌粟後提取要高;因此這些年來,還是無法放棄罌粟的種植。

既然化學合成這條路似乎不大通,有些研究團隊就開始想利用單細胞生物(細菌、酵母菌)了。過去對罌粟的研究發現,植物可以由酪氨酸(tyrosine)先合成多巴胺(dopamine)與4-HPAA,再進一步合成(S)-Norcoclaurine,接著往下合成(S)-reticuline,然後產生蒂巴因、可待因與嗎啡。

若要使細菌/酵母菌為我們合成嗎啡等化合物,研究團隊需要把這整條路徑上的酵素都一一選殖出來,並將它們放進酵母菌或細菌中。但是植物是真核生物,真核生物的蛋白質常常會有一些不一樣的修飾(modification,發生在高基氏體中),這些修飾的機制在原核生物(細菌)之中經常如附闕如!因此,雖然過去有研究團隊已經可以讓大腸桿菌以甘油(glycerol)製造出中間產物(R,S)-Norlaudanosoline,最後大家還是把眼光放向酵母菌(S. cerevisiae,啤酒酵母)。

加拿大Concordia大學的馬丁教授(Vincent J. J. Martin)的研究團隊,已經在這個題目上鑽研了非常久。2014年他發表了由(R,S)-Norlaudanosoline到中游的dihydrosanguinarine的合成;而另一個研究團隊也在去年發表了由中游到嗎啡在酵母菌中的合成。今年,馬丁教授的團隊再接再厲,將由(R,S)-Norlaudanosoline到中游的(S)-reticuline的所有酵素放到酵母菌中,並順利產生產物:(S)-reticuline(3)。

到了這一步,事實上要用酵母菌合成嗎啡、可待因、蒂巴因可以說只差臨門一腳了。那一腳呢?原來,由(S)-reticuline到(R)-reticuline還需要三個酵素,而這三個酵素目前還沒有人選殖出來。

一旦選殖出來,並成功在酵母菌中表現後,或許未來要合成嗎啡等化合物,再也不需要種植罌粟;只需要拿出酵母菌,培養若干時間後就可以得到了!

當然,政府機關一定會擔心,因此未來可能會給這些菌株加上可以辨識的遺傳標記,萬一不小心流出才知道是誰搞鬼;另外,應該也會讓這些酵母菌缺少合成某種特別的養分的基因,如此一離開實驗室便無法存活,才能令人放心吧!

其實,在田裡種罌粟也不是沒有危險,在澳洲的塔斯馬尼亞島上的藥用罌粟田,就常常有上癮到不能自拔的小袋鼠(wallaby)闖進田裡過癮呢(4)!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

1. Toby Musgrave and Will Musgrave. 2008. 植物帝國:七大經濟綠寶石與世界權力史。序曲文化。

2. Wikipedia. Total synthesis of morphine and related alkaloids.

3.Elena Fossati, Lauren Narcross, Andrew Ekins, Jean-Pierre Falgueyret, Vincent J. J. Martin. 2015. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae. PLOS One. DOI: 10.1371/journal.pone.0124459.

4. Barbara Natterson-Horowitz and Kathryn Bowers. 2013. 共病時代:醫師、獸醫師、生態學家如何合力對抗新世代的健康難題。臉譜出版。

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light